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Abstract 

This article study the deformation in a fractional ordered micropolar thermoelastic elastic half space 

whose boundary is subjected to sinusoidal type heating source. The fractional order theory of 

thermoelasticity with one relaxation time has been employed to investigate the problem. The problem 

has been solved by using Integral transform technique. The inversion of transforms is obtained 

numerically. The numerically computed results for stress and temperature distribution in the half space 

are depicted graphically.  
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1. Introduction 

Eringen’s [1] theory of micropolar elasticity is one of well established theory to study the material 

properties with microstructure. Eringen [2] and Nowacki [3] introduced thermal effects and developed 

theory of micropolar thermoelasticity.  

Recently fractional calculus has been employed to establish a number of useful models for studying  

physical phenomena, especially in the fields of heat transfer, solid mechanics, etc. Different models of 

fractional order thermoelasticity based upon fractional calculus are presented by various authors. In this 

paper we consider the theory of thermoelasticity based upon fractional calculus proposed  by Sherief et 

al. [4], Ezzat [5] and Youssef  [6]. 

Using Lord -Shulman [7] theory of thermoelasticity, Sherief et al [4] proposed heat conduction law 

given by 

K∗∇2T = ρC∗ (
∂

∂t
+ τ0

∂α′+1

∂tα
′+1

)T + νT0 (
∂

∂t
+ τ0

∂α′+1

∂tα
′+1

) ∇. u⃗  

Where α′  is the fractional order parameter with values lies in 0 and 1. T represents temperature 

distribution in the medium, T0   represents reference temperature.  K∗  denotes coefficient of thermal 

http://www.jetir.org/


© 2019 JETIR January 2019, Volume 6, Issue 1                                                www.jetir.org (ISSN-2349-5162) 

JETIRDY06022 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 121 
 

conductivity, τ0 is the thermal relaxation times,  C∗ symbolizes specific heat at constant strain,  u⃗  is the 

displacement vector. 

ν = (3λ + 2 μ + K)αt, where αt denotes coefficient of thermal linear expansion 

Youssef [5] introduced another modal of thermoelasticity by using fractional calculus  

K∗Iα
′−1∇2T = ρC∗ (

∂

∂t
+ τ0

∂2

∂t2
)T + νT0 (

∂

∂t
+ τ0

∂2

∂t2
) ∇. u⃗  

Ezzat [6] used Taylor series and proposed the equation of heat conduction given by   

K∗∇2T = ρC∗ (
∂

∂t
+

τ0
α′

α′!

∂α′+1

∂tα
′+1

)T + νT0 (
∂

∂t
+

τ0
α′

α′!

∂α′+1

∂tα
′+1

) ∇. u⃗  

Recently Kumar et.al [8] studied the interaction of these fractional order theories in micropolar elastic 

solid subjected to a ramp type heating.  Boundary conditions play a very important role to determine the 

particular solution of the problem and to analyze the behavior of the material under different types of 

conditions. In the present article, deformations in micropolar thermoelastic half space with fractional 

order heat transfer under sinusoidal heating source have been studied. Using integral transform on 

various variables analytical expressions for components of displacement, stress and temperature 

distribution are obtained in transformed domain.  

2. Equations of motion  

Equations of motion for homogeneous, isotropic micropolar thermoelastic [Eringen [2] ]  solid are  

𝑡𝑖𝑗 = 𝜆𝑢𝑟,𝑟𝛿𝑖𝑗 + 𝜇(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖) + 𝐾(𝑢𝑗,𝑖 − 𝜖𝑖𝑗𝑟𝜙𝑟) − 𝜈𝑇𝛿𝑖𝑗 (1) 

𝑚𝑖𝑗 = 𝛼𝜙𝑟,𝑟𝛿𝑖𝑗 + 𝛽𝜙𝑖,𝑗 + 𝛾𝜙𝑗,𝑖 (2) 

(𝜇 + 𝐾)∇2�⃗� + (𝜆 + 𝜇)∇(∇. �⃗� ) + 𝐾∇ × �⃗� − 𝜈∇T = ρ
𝜕2�⃗� 

𝜕𝑡2
 

(3) 

(α +  β + 𝛾) ∇(∇. �⃗� ) − 𝛾∇ × (∇ × �⃗� ) + 𝐾∇ × �⃗� − 2𝐾�⃗� =  ρj
𝜕2�⃗� 

𝜕𝑡2
 

(4) 

Where 𝜆 , 𝜇 , 𝐾 , 𝛼 , 𝛽 , 𝛾  are material constants, �⃗�  is the microrotation vector,  𝜌 

represents density, j is the microinertia. 

 

Following [4] , [5] and [6], heat conduction equation can be written as  

𝐾∗∇2𝑇 = 𝜌𝐶∗ (
𝜕𝑝1

𝜕𝑡𝑝1
+

𝜏0
𝑝2

𝑝2!

𝜕𝛼′+1

𝜕𝑡𝛼′+1
)𝑇 + 𝜈𝑇0 (

𝜕𝑝1

𝜕𝑡𝑝1
+

𝜏0
𝑝2

𝑝2!

𝜕𝛼′+1

𝜕𝑡𝛼′+1
) ∇. �⃗�  

(5) 

 

where 
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𝑝1 = 1 , 𝑝2 = 1 for Sherief theory 

𝑝1 = 1 , 𝑝2 = 𝛼′ for Ezzat theory 

𝑝1 = 𝛼′ , 𝑝2 = 1 for Youssef theory 

𝑝1 = 1 , 𝑝2 = 1 , 𝛼′ = 1 For Lord and Shulman theory 

3. Formulation of the Problem  

Consider a fractional ordered homogeneous, isotropic, micropolar thermoelastic half space in an 

undisturbed state at uniform temperature T0 .The Cartesian coordinate system (x1, x2, x3) is taken at any 

point on the plane surface and x3 -axis points vertically downwards into the medium. For the two 

dimensional problem we consider   

u⃗ = (u1 , 0 , u3)  ,  ϕ⃗⃗ = (0 , ϕ2 ,0) (6) 

Also we used  following dimensionless quantities to simplify the solution  

xi
′ =

ω∗

c1
xi,   ui

′ =
ρω∗c1

νT0
ui ,   ϕ2

′ =
ρc1

2

νT0
ϕ2 , mij

′ =
ω∗

c1νT0
mij , t

′ = ω∗t ,   T′ = 
T

T0
 

τ0
′ = ω∗τ0 , tij

′ =
tij

νT0
 ,   F1

′ =
F1

νT0
 , T1

′ = 
T1

T0
 

where ω∗ = 
ρc∗c1

2

K∗ , c1
2 =

λ+2μ+K

ρ
                    

(7) 

Consider the potential functions Φ &  ψ  as 

u1 = 
∂Φ

∂x1
−

∂ψ

∂x3
   ,   u3 = 

∂Φ

∂x3
+

∂ψ

∂x1
 

(8) 

Substituting  (8) in the equations (3)-(5), using (7) and after leaving the primes we get  

∇2Φ − 𝑇 −
𝜕2Φ

𝜕𝑡2
= 0 

 (9) 

𝑎1∇
2𝜓 + 𝑎2𝜙2 −

𝜕2𝜓

𝜕𝑡2
= 0 

 (10) 

(∇2 − 2𝑎3 − 𝑎4

𝜕2

𝜕𝑡2
)𝜙2 − 𝑎3∇

2𝜓 = 0 
            

(11)   
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            ∇2𝑇 − (𝜔∗)𝑝1−1 (
𝜕𝑝1

𝜕𝑡𝑝1
+

𝜏0

𝑝2

𝑝2!
(𝜔∗)𝛼

′+1−(𝑝1+𝑝2)
𝜕𝛼′+1

𝜕𝑡𝛼
′+1

)𝑇

− 𝑎5 (
𝜕𝑝1

𝜕𝑡𝑝1
+

𝜏0

𝑝2

𝑝2!
(𝜔∗)𝛼

′+1−(𝑝1+𝑝2)
𝜕𝛼′+1

𝜕𝑡𝛼
′+1

)∇2Φ = 0 

 

(12) 

Where 𝑎1 =
𝜇+𝐾

𝜌𝑐1
2    ,  𝑎2 = 

𝐾

𝜌𝑐1
2  , 𝑎3 = 

𝐾𝑐1
2

𝛾𝜔∗2   , 𝑎4 = 
𝜌𝑗𝑐1

2

𝛾
 , 𝑎5 =

𝜈2𝑇0(𝜔
∗)(𝑝1−2)

𝜌𝐾∗  

Consider the following definition for Laplace and Fourier transform  

𝑓(𝑥1 , 𝑥3, 𝑠) = ∫ 𝑓(𝑥1 , 𝑥3, 𝑡)𝑒
−𝑠𝑡𝑑𝑡

∞

0
      (13) 

𝑓̅(𝜉 , 𝑥3, 𝑠) = ∫ 𝑓(𝑥1 , 𝑥3 , 𝑠)𝑒
𝑖𝜉𝑥1𝑑𝑥1

∞

−∞
       (14) 

Applying the Laplace transform and Fourier transform as given in  (13)-(14) on (9)-(12), we obtained  

(𝐷4 + 𝑏1𝐷
2 + 𝑏2)Φ̃̅ = 0                                                                                                     (15) 

(𝐷4 + 𝑏3𝐷
2 + 𝑏4)�̃̅� = 0         (16) 

where 

𝑏1 = −(𝑎5𝑙1 + 𝑙2 + 𝑙3) ,𝑏2 = 𝑙2 𝑙3 + 𝑎5𝑙1𝜉
2 ,𝑏3 = −(𝑙5 + (

𝑙4

𝑎1
) −

𝑎2𝑎3

𝑎1
) ,𝑏4 =

𝑙4 𝑙5−𝑎2 𝑎3 𝜉
2

𝑎1
  

𝑙1 = 𝑠𝑝1 +
𝜏0
𝑝2

𝑝2!
(𝜔∗)𝛼

,+1−(𝑝1+𝑝2)𝑠𝛼,+1, 𝑙2 = 𝜉2 + (𝜔∗)(𝑝1−1)𝑙1, 𝑙3 = 𝜉2 + 𝑠2 , 𝑙4 = 𝑎1𝜉
2 + 𝑠2 ,𝑙5 = 𝜉2 + 2𝑎3 +

𝑎4𝑠
2, 𝐷 =

𝑑

𝑑𝑥3
                                                                                                                                       (17) 

Using the conditions  Φ̃̅, �̃̅�, �̃̅�2 𝑎𝑛𝑑 �̃̅� → 0 𝑎𝑠 𝑥3 → ∞, the solution of equations (15) and (16) is taken as   

{Φ̃̅ , �̃̅�} = ∑ {1, 𝑟𝑖}
2
𝑖=1 𝐴𝑖𝑒

−𝑚𝑖𝑥3                                                                                                                      (18) 

{�̃̅� , �̃̅�2} = ∑  {1, 𝑠𝑗}
4
𝑗=3 𝐴𝑗𝑒

−𝑚𝑗𝑥3                                                                                                                   (19) 

where 

𝑟𝑖 = 𝑚𝑖 − 𝑙3 ,   𝑖 = 1,2 ,𝑠𝑗 =
1

𝑎2
(𝑙4 − 𝑎1𝑚𝑗

2)   𝑗 = 3,4 

where 𝑚1 ,𝑚2 are the roots of the equation (15) and 𝑚3 ,𝑚4are the roots of the equation (16) 

We obtained the displacement component �̃̅�1 and �̃̅�3 from equation (8) as 

�̃̅�1 = −i ξA1𝑒
−𝑚1𝑥3 − 𝑖𝜉𝐴2𝑒

−𝑚2𝑥3 + 𝐴3𝑚3𝑒
−𝑚3𝑥3 + 𝐴4𝑚4𝑒

−𝑚4𝑥3                                 (20) 
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�̃̅�3 = −m1A1𝑒
−𝑚1𝑥3 − 𝑚2𝐴2𝑒

−𝑚2𝑥3 − i ξ𝐴3𝑒
−𝑚3𝑥3 − i ξ𝐴4𝑒

−𝑚4𝑥3                                 (21) 

4. Boundary Conditions  

The surface of the half space is assumed to be stress-free and subjected to a sinusoidal type heating source i.e   

𝑡33(𝑥1, 0, 𝑡) = 𝑡31(𝑥1, 0, 𝑡) = 𝑚32 = 0 , T(𝑥1 ,0 , t ) =𝐺(𝑡)𝐹(𝑥1) (22) 

where G(t) as defined by  G(t) ={

0                     𝑡 < 0

T1 + Asin (
2𝜋𝑡

𝑡0
)          0 ≤ 𝑡 ≤ 𝑡0

T1                     𝑡 > 𝑡0

 

 

(23) 

where 𝑇1 is the constant average temperature and A is amplitude of the sinusoidal temperature wave.  𝑡0 is a 

fixed moment of time during which the surface has been exposed to sinusoidal heating source. 𝐹(𝑥1) is an 

arbitrary function of  𝑥1 and is consider as  

𝐹(𝑥1) = 𝛿(𝑥1)   (24) 

Here  𝛿( ) is Dirac delta function. 

Applying integral transforms (13)-(14) on (22) we get 

𝑡̅̃33(ξ ,0, s) = 0, 

 𝑡̅̃31(ξ ,0, s) = 0 , 

 �̃̅�32 = 0 , 

 �̃̅�(ξ ,0, s) =  �̅�(s)  

where �̅�(s) =
T1

s
+

𝜔′A(1−𝑒−𝑠𝑡0)

𝑠2+𝜔′2
   

 

(25) 

Applying integral transforms (13)-(14)  on (1)-(2) and using (7), we get 

𝑡̅̃33 = −𝑎6𝑖𝜉�̃̅�1 + 𝐷�̃̅�3 − �̃̅�  (26) 

𝑡̅̃31 = −𝑎7𝑖𝜉�̃̅�3 + 𝑎1𝐷�̃̅�3 − 𝑎2�̃̅�2  (27) 

�̃̅�32 = 𝑎8𝐷�̃̅�2  (28) 

and 𝑎6 =
𝜆

𝜌𝑐1
2   , 𝑎7 = 

𝜇

𝜌𝑐1
2   , 𝑎8 =

𝛾𝑤∗2

𝜌𝑐1
4  

Substitute the values of �̃̅�1 ,�̃̅�3,�̃̅� ,�̃̅�2 the boundary condition (25) and using (26)- (28), we obtained   

𝑡̅̃33 =
�̅�(s)

∆
(𝑑11∆1𝑒

−𝑚1𝑥3 + 𝑑12∆2𝑒
−𝑚2𝑥3 + 𝑑13∆3𝑒

−𝑚3𝑥3 + 𝑑14∆4𝑒
−𝑚4𝑥3) 

(29) 

𝑡̅̃31 =
�̅�(s)

∆
(𝑑21∆1𝑒

−𝑚1𝑥3 + 𝑑22∆2𝑒
−𝑚2𝑥3 + 𝑑23∆3𝑒

−𝑚3𝑥3 + 𝑑24∆4𝑒
−𝑚4𝑥3) 

(30) 
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�̃̅�32 =
�̅�(s)

∆
(𝑑33∆3𝑒

−𝑚3𝑥3 + 𝑑34∆4𝑒
−𝑚4𝑥3) 

(31) 

�̃̅� =
�̅�(s)

∆
(𝑟1∆1𝑒

−𝑚1𝑥3 + 𝑟2∆2𝑒
−𝑚2𝑥3) 

(32) 

 

where 

∆= |

𝑑11 𝑑12 𝑑13 𝑑14

𝑑21 𝑑22 𝑑23 𝑑24

𝑑31

𝑑41

𝑑32

𝑑42

𝑑33 𝑑34

𝑑43 𝑑44

| , where ∆𝑖 , 𝑖 = 1,2,3,4  areobtained from ∆ by interchanging 𝑖𝑡ℎcolumn by the 

column [0, 0,0,1]𝑇 

and  

𝑑1𝑖 =  −𝑎6𝜉
2 + 𝑚𝑖

2 − 𝑟𝑖𝑖 = 1,2 , 𝑑1𝑗 = 𝑖𝜉𝑚𝑗(−𝑎6 + 1),     𝑗 = 3,4 , 𝑑2𝑝 =  𝑖𝜉𝑚𝑝(𝑎7 + 𝑎1),       𝑝 = 1,2 

𝑑2𝑞 = −(𝑎7𝜉
2 + 𝑎1𝑚𝑞 + 𝑎2𝑠𝑞),    𝑞 = 3,4 , 𝑑31 = 0, 𝑑32 = 0 , 𝑑3𝑙 = 𝑠𝑙𝑚𝑙 ,     𝑙 = 3,4 

𝑑4𝑛 = 𝑟𝑛 , 𝑑43 = 0 , 𝑑44 = 0  ,   𝑛 = 1,2  

By putting suitable values of p1, p2 and α′ , we can obtained temperature, stress and displacement 

components for Sherief , Youssef , Ezzat and Lord – Shulman theory . 

5. Solution in physical domain 

Analytically the inverse of integral transforms becomes difficult due to complicated expressions of 

different field variables. So numerical computations have been carried out to find the solution in 

physical domain, we invert the Laplace and Fourier transforms by means of method described by Kumar 

et.al [9] 

6. Numerical results and analysis  

In order to illustrate the contribution of fractional parameter, effect of sinusoidal heating on different 

field variables a numerical analysis is carried out, Following [8] [10], data for a magnesium crystal is 

given below  

λ = 9.4 X1011kgm−1s−2 , μ = 4.0X1011kgm−1s−2 , T0 = 298K, K = 1.0X1011kgm−1s−2 

j = 0.2X10−19m2 ,   γ = 0.779X10−9kgms−2 ,   ρ = 1.74X103kgm−3, αt = 2.36X10−5K−1 

C∗ = 9.623X102Jkg−1K−1 , K∗ = 2.510Wm−1K−1, τ0 = 0.02s  

The computations are carried out on the surface of the plane x3 = 1 in the range 0 ≤ x1 ≤ 2.5.The 

numerically computed results for normal stress, tangential stress , tangential couple stress  and 
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temperature distribution  are depicted with respect to distance x1  shown in Figs.1-4. We have 

investigated how the stresses and temperature vary with distance x1for different values of parameter t0  

for Lord-Shulman theory. Variations are shown for three different values of sinusoidal parameter  t0 =

0.2,0.3 0.5. As can be seen from figures (1-3) all the stress components shows oscillatory behavior and 

all components tend to vanish with increase in distance. Significant variations are noticed for different 

values sinusoidal parameter  t0.  Figure 4 describe the variations in temperature distribution T with 

distance  x1 and as shown this field decreases with distance from the source location. Small variations 

are also observed in temperature distribution for considered values of sinusoidal parameter  t0.  
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Figure 1.   Normal stress w.r.t. distance for different values of parameter t0 
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Figure 2. Tangential stress w.r.t. distance for different values of parameter t0 
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Figure 3. Tangential couple stress w.r.t. distance for different values of parameter t0 
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Figure 4. Temperature distribution w.r.t. distance for different values of parameter t0 

7.  CONCLUSION 

In the present manuscript, the deformation in a fractional ordered micropolar thermoelastic half space 

due to sinusoidal heating source has been studied. Using integral transform techniques the analytical 

expressions for displacement and stress components together with temperature distribution are obtained 

in the transformed domain. The results obtained in transformed domain are inverted numerically to 

physical domain. Sinusoidal heating source has significant effects on all the field variables and effect 

decreases with increase in distance from the source.  
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